

 [image: _images/platformus.png]

Platformus CMS

Platformus [https://platformus.net/] is free, open source, and cross-platform developer-friendly CMS
based on ASP.NET Core, ExtCore framework [https://extcore.net/], and Magicalizer [https://magicalizer.net/].

It can be used for rapid development of the websites and admin panels for mobile and web applications.
There are built-in features to describe, create, and deliver multilingual and multicultural content as HTML or JSON without writing code,
but it is possible to develop custom extensions with the standardized user interface when performance is important.
Wide range of the tag helpers makes it simpler and faster.

Platformus CMS is modular and extendable, it can run on different environments (Linux, Mac, Windows, and clouds)
and supports different database types (PostgreSQL, SQLite, SQL Server).

[image: _images/111.png]
[image: _images/23.png]
[image: _images/32.png]

Contents

	Getting Started
	Samples

	Using as the NuGet Packages

	Using as the Source Code

	Database Scripts

	Tutorial: Basic Content Management

	Fundamentals

	Platformus.Core
	Permissions

	Roles

	Users

	Configurations

	Cultures

	Platformus.Website
	Objects

	Menus

	Forms

	File Manager

	Classes

	Tabs

	Members

	Endpoints

	Data Sources

	Advanced
	Custom Form Handlers

	Custom Data Sources

	Custom Endpoints

	Platformus.ECommerce
	Categories

	Products

	Carts

	Orders

	Order States

	Delivery Methods

	Payment Methods

	Platformus.Images

	Custom Extensions
	Backend Dashboard Widgets

	Backend Menu

	Backend Styles and Scripts

	Embedded Resources

	Styles and Scripts Minification

	Tutorial: Creating a Custom Extension

Getting Started

To start using Platformus CMS you need to either reference it as the NuGet packages (the preferred way) or the source code,
prepare the database by executing the database scripts (with both schema and data), and create content.

	Samples

	Using as the NuGet Packages

	Using as the Source Code

	Database Scripts

	Tutorial: Basic Content Management

Samples

Please take a look at our samples on GitHub:

	Platformus-Sample-Personal-Website [https://github.com/Platformus/Platformus-Sample-Personal-Website]

	Platformus-Sample-Personal-Blog [https://github.com/Platformus/Platformus-Sample-Personal-Blog]

	Platformus-Sample-Ecommerce [https://github.com/Platformus/Platformus-Sample-Ecommerce]

	Platformus-Sample-Mobile-App-Admin-Panel [https://github.com/Platformus/Platformus-Sample-Mobile-App-Admin-Panel]

Using as the NuGet Packages

Using Platformus CMS as the NuGet packages is the preferred way
(unless you consider the source code only as a starting point for your own project and do not need any updates in the future).
Your host web application can contain any application-specific code,
and you can extend the built-in features and modify the default behaviors using the Platformus public API.

	Create an ASP.NET Core host web application (or use an existing one):

[image: ../_images/19.png]
[image: ../_images/21.png]

	Open NuGet Package Manager and add dependencies on the following Platformus packages:

[image: ../_images/31.png]

	Platformus.Core.Data.EntityFramework.Sqlite

	Platformus.Images

	Platformus.Website.Backend

	Platformus.Website.Data.EntityFramework.Sqlite

	Platformus.Website.Frontend

	Platformus.WebApplication

Or you can add them manually by editing .csproj file of your web application project:

<ItemGroup>
 <PackageReference Include="Platformus.Core.Data.EntityFramework.Sqlite" Version="4.0.0" />
 <PackageReference Include="Platformus.Images" Version="4.0.0" />
 <PackageReference Include="Platformus.Website.Backend" Version="4.0.0" />
 <PackageReference Include="Platformus.Website.Data.EntityFramework.SqlServer" Version="4.0.0" />
 <PackageReference Include="Platformus.Website.Frontend" Version="4.0.0" />
 <PackageReference Include="Platformus.WebApplication" Version="4.0.0" />
</ItemGroup>

	Open your Startup class.

Add the services.AddPlatformus() extension method call inside the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddPlatformus();
}

Add the StorageContextOptions options class configuration inside the ConfigureServices method
in order to provide the connection string (of course, you should take it from the application settings):

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<StorageContextOptions>(options =>
 {
 options.ConnectionString = this.configuration.GetConnectionString("Default");
 }
);

 services.AddPlatformus(this.extensionsPath);
}

Add the applicationBuilder.UsePlatformus() extension method call inside the Configure method:

public void Configure(IApplicationBuilder applicationBuilder, IWebHostEnvironment webHostEnvironment)
{
 if (webHostEnvironment.IsDevelopment())
 applicationBuilder.UseDeveloperExceptionPage();

 applicationBuilder.UsePlatformus();
}

Don’t forget to include the Platformus.WebApplication.Extensions namespace in order these extension methods to be resolved.

	Execute the Platformus database scripts on your database.

5. Run your web application and navigate to /backend to configure Platformus.
Use the default “admin@platformus.net” and “admin” credentials to sign in.

Using as the Source Code

Use Platformus CMS as the source code only if you consider it as a starting point for your own project and do not need any updates in the future.

	Create an ASP.NET Core host web application (or use an existing one):

[image: ../_images/110.png]
[image: ../_images/22.png]
2. Download Platformus sources [https://github.com/Platformus/Platformus/tree/master/src] from the GitHub.
Copy them into your solution folder.

	Add dependencies on the following projects to your web application project:

	Platformus.Core.Data.EntityFramework.Sqlite

	Platformus.Images

	Platformus.Website.Backend

	Platformus.Website.Data.EntityFramework.Sqlite

	Platformus.Website.Frontend

	Platformus.WebApplication

	Open your Startup class.

Add the services.AddPlatformus() extension method call inside the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddPlatformus();
}

Add the StorageContextOptions options class configuration inside the ConfigureServices method
in order to provide the connection string (of course, you should take it from the application settings):

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<StorageContextOptions>(options =>
 {
 options.ConnectionString = this.configuration.GetConnectionString("Default");
 }
);

 services.AddPlatformus(this.extensionsPath);
}

Add the applicationBuilder.UsePlatformus() extension method call inside the Configure method:

public void Configure(IApplicationBuilder applicationBuilder, IWebHostEnvironment webHostEnvironment)
{
 if (webHostEnvironment.IsDevelopment())
 applicationBuilder.UseDeveloperExceptionPage();

 applicationBuilder.UsePlatformus();
}

Don’t forget to include the Platformus.WebApplication.Extensions namespace in order these extension methods
to be resolved.

	Execute the Platformus database scripts on your database.

5. Run your web application and navigate to /backend to configure Platformus.
Use the default “admin@platformus.net” and “admin” credentials to sign in.

Database Scripts

Currently Platformus CMS supports following database types:

	PostgreSQL database

	SQLite database

	SQL Server database

GitHub repository contains SQL scripts [https://github.com/Platformus/Platformus] for each database type,
separately with the schema and initial data.

Tutorial: Basic Content Management

To understand better how the Platformus content management works, let’s use the
default personal website [https://github.com/Platformus/Platformus-Sample-Personal-Website] sample and add blog feature to it.

There are two ways to work with content using Platformus CMS: using the built-in Website extension and writing a custom one.
The first option is suitable when simplicity and speed of development are more important than application performance.
It works good for website pages, blog categories, posts, tags etc.
The Website extension implements the EAV pattern [https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model]
using the classes and members to describe content, and objects, properties, and relations to store it.
Writing custom extension is more complex task, but in this case performance and flexibility are maximized.
In this tutorial we will go the first way.

First of all, we need the blog post pages. Each post page should have the same properties as the regular page,
but also it needs preview (a small piece of content), image, and creation date. In the Platformus context,
all the pages are objects which are described by the classes. Therefore, to create new type of page
(and new type of object) we need to create the corresponding class first.

Go to the backend and sign in (navigate to https://localhost:5000/backend/)
and then go to the Development/Classes section. There are already two classes here: Page and Regular Page.

[image: ../_images/1.png]
The Page class is abstract, it means that it is used as the base class for the other ones (class copies all the members
of its parent class). Click the Members link of the Page class to see the list of its members.
As you can see, there are the standard page properties here, like URL, Content, Title, META description,
and META keywords:

[image: ../_images/2.png]
Now return to the class list and click the Create class button. Select the Page class as the parent class
for our new one. Fill the Code, Name, and Pluralized name fields as shown below:

[image: ../_images/3.png]
Click the Save button. New class is created. Now go to the list of its members. It is empty for now
(but don’t forget that our class will have all the members from the Page class, because it is selected
as the parent one).

Let’s add the Preview member to our class. Click the Create member button and fill the Code,
Name, and Position fields as shown below:

[image: ../_images/4.png]
If we had a lot of the members, we could use tabs to group them on the object edit page, but in our case,
we only use it to group the properties that are related to SEO in the parent class. Position is set to 5,
because we want our property editor to appear before the Content property one
(Content member has position set to 10).

Now click the Property tab and fill the fields as shown below:

[image: ../_images/5.png]
When you change the property data type, the set of the fields on this tab is changed too. You can add your own data types
and specify their properties (as well as the client-side editors that are used to edit them).
For the properties that have short values we can set the Is property visible in list checkbox,
so that properties will be displayed in the object list (we will see that later).
Now click the Save button again, our member is created.

Add the Image and Creation date members in the same way (but select the Image and Date property data types for them).
Our member list will look like this:

[image: ../_images/6.png]
That’s it, we are done with our data model for now. Let’s add some content. Go to the Content/Objects section.
Objects (and again, our pages are objects) are grouped by the parent classes (pluralized names are used to name the groups).
Objects of the classes that doesn’t have parent ones go under the Others group. Our Post Page class is
already here:

[image: ../_images/7.png]
Click the Create post page button:

[image: ../_images/8.png]
As you can see, all the properties we have defined in the corresponding class are here. Fill the fields and click
the Save button. New post is created:

[image: ../_images/9.png]
There are only the properties are displayed whose members have Is property visible in list checkbox checked.

Now we have our post page object created. We can use different ways to present it (view, API, plain text and so on),
but now let’s use old good view for that.

Create PostPage.cshtml file inside the Views folder of the web application project with the following content:

@model dynamic
@{
 this.ViewBag.Title = this.Model.Page.Title;
 this.ViewBag.MetaKeywords = this.Model.Page.MetaKeywords;
 this.ViewBag.MetaDescription = this.Model.Page.MetaDescription;
}
<div class="post-page post">
 <h1>
 @Model.Page.Title
 </h1>
 <div class="post__cover">

 </div>
 @Html.Raw(this.Model.Page.Content)
 <div class="post__created">
 @Model.Page.CreationDate
 </div>
</div>

The HTML ifself is very simple. You can see that all the data comes from the view model. There is the Page property
which contains all the properties of our post page object that we have described by the class members
(and property names are the same as the member codes). This Page property is created for us by the corresponding data source.
If your view needs more different data in order to be rendered, just add more data sources that will provide this data
to the view model.

Data sources specify the C# classes that implement the
IDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/DataProviders/IDataProvider.cs#L12]
interface, you can create your own ones. They can provide data in any way you need: to load some objects,
to take it from the web services (weather forecast?), or to return some hardcoded values. All the data sources
that are used to process the particular request are grouped inside the endpoint. Endpoints process the requests
and return response in Platformus-based web applications (as well as data sources, they specify C# classes that implement the
IRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/RequestProcessors/IRequestProcessor.cs#L12]
interface, and you can create your own implementations). We will see how this all works a bit later in this article.
You can still use regular C# controllers to process requests which is simple, but it is related to writing custom extensions and is not considered in this tutorial.

We have described and created the content (our post page object), we have also created the presentation for that content
(our view). The last thing we must do to make it all work is to create the endpoint and the data source.
Go to the Development/Endpoints section. Click the Create endpoint button and fill the fields
as shown below:

[image: ../_images/10.png]
[image: ../_images/11.png]
Endpoints define how your Platformus-based web application processes the HTTP requests.
By default, if there are no endpoints (and regular C# controllers or pages) configured, you will have 404 response on every request. By specifying the URL template
for the endpoint, you tell the instance of the
IEndpointResolver [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Services/Abstractions/IEndpointResolver.cs#L9]
interface which endpoint it should use to process the particular request (you can use {*url} one to handle all the requests).
It is done the similar way as the MVC routes configuration (endpoint is something like route and controller at once;
endpoints support URL parameters too) and it is executed after the default MVC routing. Also, you can specify which C# class (implementation of the IRequestProcessor interface)
will process the request and return the result. You can write your own implementations of that interface and use them to process the requests.
Specify the view name that we have created earlier that will be used by this endpoint to render the response.
Click the Save button to create our new endpoint:

[image: ../_images/12.png]
One more thing about the endpoints. Default implementation of the IEndpointResolver interface checks endpoints,
sorted by the position, one by one (whether the current one’s URL template matches the request’s URL or not).
That’s why position field value is important. If you have a few endpoints that match the given URL, the first one will be used.

The last thing we have to do is to add the data source that will load the post page object by the value of the URL property
and assign it to the view model’s Page property (that will also be created). Click the Data sources link and then the
Create data source button. Fill all the fields as shown below and click the Save button:

[image: ../_images/13.png]
That’s it. Now we can test how our post page is displayed. Navigate to
https://localhost:5000/en/blog/my-first-blog-post:

[image: ../_images/14.png]
It works! But we also need to have a page with all the posts. We will make it quickly, because now you know enough.
This page will display the posts, so we don’t need to create any new class (just create the regular page object with
the URL property value set to /blog). All we need is to create new view, endpoint and two data sources for it.
Let’s start from the BlogPage.cshtml view:

@model dynamic
@{
 this.ViewBag.Title = this.Model.Page.Title;
 this.ViewBag.MetaKeywords = this.Model.Page.MetaKeywords;
 this.ViewBag.MetaDescription = this.Model.Page.MetaDescription;
}
@Html.Raw(this.Model.Page.Content)
<div class="blog">
 @foreach (var post in this.Model.Posts)
 {
 @Html.Partial("_Post", post as object)
 }
</div>

As you can see, we will have a data source that will provide the Posts view model property for us.
Also we have to create the _Post.cshtml partial view (inside the Shared folder):

@model dynamic
<div class="posts__post post">
 <h2>
 @Model.Title
 </h2>
 <div class="post__cover">

 </div>
 @Html.Raw(this.Model.Preview)
 <div class="post__created">
 @Model.CreationDate
 </div>
</div>

Now create the new endpoint (you have to have the separated endpoint for each page template (or view)):

[image: ../_images/15.png]
[image: ../_images/16.png]
Because the page that will display the list of the posts is the page too, add the Page data source for
our new endpoint (the same way we have done that for the previous one). It will load our regular page object that holds
Content and other properties of this page.

But in order to be able to display the posts on this page, we must add one more data source:

[image: ../_images/17.png]
As you can see, another C# class is selected as data provider for this data source. It provides more properties for us. For example,
it allows to specify the class of the objects to load etc.

Everything is done. Now you can navigate to https://localhost:5000/en/blog
and see the result:

[image: ../_images/18.png]
Click the image to go to the post page. You can add the new menu item in the menu to have your blog there.

Fundamentals

Platformus CMS is modular and extendable, so its behavior is very dependent on the set of the extensions.
The main and the only required extension is the Platformus.Core. It doesn’t provide any content management,
instead it implements such basic things like reusable admin panel (or backend) UI, user access control,
configuration, localization etc.

Depending on your needs and requirements you can either use other existing extensions to manage your content
or write your own one(s). Anyway, the main purpose of the Platformus CMS is to save you from writing routine code,
to speed up development, and to provide you with convenient and standardized admin panel UI. Also,
you can write and then reuse small typical extensions from project to project.

Standard Extensions

There are 4 standard extensions:

	Platformus.Core

	Platformus.Website

	Platformus.Ecommerce

	Platformus.Images

Let’s look at a few usage examples to choose the best way to go. All these approaches do not exclude each other and can be combined.

Mobile app API with admin panel

You can create an empty web application, add dependencies on the Platformus.Core extension packages,
and write a custom extension that will contain all the application-specific things: entities, models, DTOs,
controllers, admin panel sections etc.

In this case you have the very basic things out of the box and do not need to think about backend UI,
combining it using the built-in tag helpers like bricks. At the same time, CMS has no effect on performance,
so you can get maximum of what the .NET gives.

Website

Most of the websites’ content is changed from time to time, so if you are using a cache,
it could be not so important how many milliseconds it takes to retrieve from a database and display your data.

Development time is much more important in such cases, so you can use the Platformus.Website extension.
It provides features to describe your content with classes and then create and use it as objects.
This extension allows to avoid programming and, in many cases, trivial configuration and writing Razor views could be enough.

Ecommerce

Platformus CMS contains the Platformus.Ecommerce extension which contains standard ecommerce features
such categories and products, filter, cart etc. It can be used as the NuGet packages, or as the source code.
The second option could be useful when you need a very specific ecommerce app, so you can just use the source code
as a simple barebone and implement features you need.

Platformus.Core

This is the only required extension for any Platformus-based web application. It contains such basic things
like reusable admin panel (or backend) UI, user access control based on permissions and roles, configuration, localization etc.

Admin Panel Sections

	Permissions

	Roles

	Users

	Configurations

	Cultures

Packages

	Platformus.Core [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core]

	Platformus.Core.Backend [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core.Backend]

	Platformus.Core.Data.Entities [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core.Data.Entities]

	Platformus.Core.Data.EntityFramework.PostgreSql [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core.Data.EntityFramework.PostgreSql]

	Platformus.Core.Data.EntityFramework.Sqlite [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core.Data.EntityFramework.Sqlite]

	Platformus.Core.Data.EntityFramework.SqlServer [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core.Data.EntityFramework.SqlServer]

	Platformus.Core.Frontend [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Core.Frontend]

Permissions

Permissions are used to control user access to a web application resources. You can manage them (create, edit, and delete)
from the backend using the Audience/Permissions section:

[image: ../_images/114.png]
Each permission has name, code, and position:

[image: ../_images/26.png]

Code

Code might be used to check permissions from code (see examples below).

Position

Position might be used to sort the permissions in the correct order.

Once you created a permission, you can assign it to a role (and then to a user).
While signing in, all the user roles and all the permissions from that roles are attached to the user as the claims.
These claims then can be checked from the code:

if (context.User.HasClaim(PlatformusClaimTypes.Permission, Permissions.ManageUsers))
{
}

Platformus uses authorization policies to control access to the controllers and actions:

[Authorize(Policy = Policies.HasManageUsersPermission)]
public class UsersController : ControllerBase { }

In order to be able to use an authorization policy, it should be
added to the authorization options [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/Actions/AddAuthorizationAction.cs#L20]
inside the services.AddAuthorization() extension method:

services.AddAuthorization(options =>
 {
 foreach (IAuthorizationPolicyProvider authorizationPolicyProvider in ExtensionManager.GetInstances<IAuthorizationPolicyProvider>())
 options.AddPolicy(authorizationPolicyProvider.Name, authorizationPolicyProvider.GetAuthorizationPolicy());
 }
);

As you can see, the ExtCore framework’s
ExtensionManager [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/ExtensionManager.cs#L16]
class is used to get all the instances of the
IAuthorizationPolicyProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/IAuthorizationPolicyProvider.cs#L14]
interface implementations. Then method IAuthorizationPolicyProvider.GetAuthorizationPolicy() is used
to get the authorization policies.

So, if the permission is used to control access to a controller or action via policy, you need to implement
the IAuthorizationPolicyProvider interface and then add corresponding attribute to the controller or action.
If you only want to check the permission from code, you don’t have to implement that interface.

Roles

Roles are used to group the permissions. You can’t assign a permission to a user directly,
it is only possible to assign a role. You can manage them (create, edit, and delete) from the backend
using the Audience/Roles section:

[image: ../_images/115.png]
Each role has name, code, position, and other fields:

[image: ../_images/27.png]

General/Code

Code might be used to check roles from code.

General/Position

Position might be used to sort the roles in the correct order.

Also, on the Permissions tab you can assign the permissions to a role:

[image: ../_images/35.png]
The same as permissions, roles are attached to a user as the claims while signing in.
You can check them from the code to control rights and restrict access, but permissions checking is preferred.

Users

Users (as well as permissions and roles)
are used to control access to a web application resources.
You can manage them (create, edit, and delete) from the backend using the Audience/Users section:

[image: ../_images/116.png]
Each user has name:

[image: ../_images/28.png]
Also, on the Roles tab you can assign the roles to a user:

[image: ../_images/36.png]
As user itself only has a name, he doesn’t store any information about how he signs in.
This information is stored using the
Credential [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Data.Entities/Credential.cs#L13]
objects. Each user can have different credentials, and each credential has its
type [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Data.Entities/CredentialType.cs#L14]
(it can be email and password, Facebook account, Microsoft account and so on). When user signs in,
Platformus checks if there is a credential with the given type, identifier, and secret exists. If the credential is found,
corresponding user is signed in.

The credential list looks like this:

[image: ../_images/41.png]
Each credential has type, identifier, and secret:

[image: ../_images/51.png]

Credential type

As a developer, you can create your own credential types which depend on the sign in methods your application supports.

Secret

Secret is optional and can be used to store any additional information. For example, it stores passwords (as hashes)
for the email and password credential type. If you need to change the password, just type it into this field.
Don’t forget to set the Apply PBKDF2 hashing to secret checkbox to apply hashing,
otherwise your password will be saved as plain text and signing in won’t work (as it compares hashes).

Configurations

Configurations and variables are used to provide user-defined configuration parameters to the web application
(while developer-defined ones can be provided using the appsettings.json file).
You can manage them (create, edit, and delete) from the backend using the Administration/Configurations section:

[image: ../_images/112.png]
Each configuration has code and name:

[image: ../_images/24.png]

Code

Code might be used to get configuration from code (see examples below).

Configurations consist of variables. Each variable has code, name, value, and position:

[image: ../_images/33.png]

Code

The same as for configurations, Code is used to get variable from code.

Value

Value contains the variable’s value.

Position

Position might be used to sort the variables in the correct order.

There is the special
DefaultConfigurationManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/Services/Defaults/DefaultConfigurationManager.cs#L12]
class that you can use to access the configurations. It implements the
IConfigurationManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/Services/Abstractions/IConfigurationManager.cs#L9]
interface and it is registered as a service inside the DI, so you can replace it with your own implementation.

This is the usage example:

public class DefaultController : Controller
{
 public DefaultController(IConfigurationManager configurationManager)
 {
 string emailSmtpServer = configurationManager["Email", "SmtpServer"];
 }
}

This will get value of the variable with code SmtpServer from the configuration with code Email.

Cultures

Cultures are used to specify which languages and data formats your web application supports.
You can manage them (create, edit, and delete) from the backend using the Administration/Cultures section:

[image: ../_images/113.png]
Each culture has two-letter language code, name, and other fields:

[image: ../_images/25.png]

Two-letter language code

This code complies with ISO 639-1. It is used, for example, as URL segment to determine request’s language (see below).

Is frontend default

Specifies if this culture should be used as the default one on the frontend (it means that this culture will be used
when the culture is not explicitly provided).

Is backend default

Specifies if this cultured should be used as the backend (admin panel) one.

You can see that there is the Neutral culture exists in the list. This culture is used by the Platformus.Website
extension to store the culture-neutral string values using the localizations [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Data.Entities/Localization.cs#L12].

When you create your own extension or describe your data model with classes and members using the Platformus.Website one,
you can specify whether the particular string property is localizable or not. If it is localizable, N editors will be displayed,
one for each of the cultures. It looks like this:

[image: ../_images/34.png]
When your string property is not localizable, the only one editor will be displayed, and the property value will be saved
either using the localization with neutral culture (in case the Platformus.Website extension is used)
or in the way you want it to be saved.

When using the Platformus.Website extension, by default a short two-letter language code segment
is used in the URL on the frontend to specify which culture should be used for the request.
For example: /en/some-page. It is done in this way to make it possible for the pages to be indexed by the search engines
with the different languages. But if you are sure that your web application will always support the only one language,
you can turn off this behavior using the configurations and have shorter URLs.
In this case, the default culture will be used to display the content (but you can change the way culture is selected
for the requests; for example, the Accept-Language header can be used).

There is the special
DefaultCultureManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/Services/Defaults/DefaultCultureManager.cs#L15]
class that you can use to work with the cultures. It implements the
ICultureManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/Services/Abstractions/ICultureManager.cs#L13]
interface and it is registered as a service inside the DI, so you can replace it with your own implementation.

Platformus.Website

This extension provides everything for building simple websites without (or almost without) programming.
You can describe your custom content types and manage your data using the automatically generated admin panel UI.
For example, you can have blog posts, tags, and comments with all the properties you need.

Also, there are built-in features to work with menus and forms.
You can create them in the backend and then display on frontend using the tag helpers.

A basic file manager is also provided by Platformus.Website extension.

Admin Panel Sections

	Objects

	Menus

	Forms

	File Manager

	Classes

	Tabs

	Members

	Endpoints

	Data Sources

	Advanced
	Custom Form Handlers

	Custom Data Sources

	Custom Endpoints

Packages

	Platformus.Website [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website]

	Platformus.Website.Backend [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Backend]

	Platformus.Website.Data.Entities [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Data.Entities]

	Platformus.Website.Data.EntityFramework.PostgreSql [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Data.EntityFramework.PostgreSql]

	Platformus.Website.Data.EntityFramework.Sqlite [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Data.EntityFramework.Sqlite]

	Platformus.Website.Data.EntityFramework.SqlServer [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Data.EntityFramework.SqlServer]

	Platformus.Website.Frontend [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Frontend]

Objects

Object is the central part of the default Platformus CMS data model. It is an elementary piece of the information.
It can be your blog post, comment, or tag. Objects are described by classes and members and consist of properties and relations.
You can manage them (create, edit, and delete) from the backend using the Content/Objects section:

[image: ../_images/127.png]
The Content/Objects section has subsections that correspond to classes. These subsections are grouped using the parent classes.
Classes without parents go under the Other group.

As we said, objects consist of properties and relations and are described by classes and members.
Each property has its own client-side editor, which is specified by the
data type [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Data.Entities/DataType.cs#L13] of the member.
As a developer, you can create your own data types and client-side editors. Also, data types specify
which primitive storage data type [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Data.Entities/StorageDataTypes.cs#L6]
should be used to store the particular property value (integer, decimal, string and datetime are supported).
String properties can be localizable and non-localizable.

The object edit page consist of client-side editors grouped by tabs. A typical page can look like this:

[image: ../_images/219.png]
The property editors may look and behave absolutely different. This is the property editor for the
Image data type looks like:

[image: ../_images/314.png]
And this is the one for the Date data type:

[image: ../_images/46.png]

Menus

Menus are used for navigation on the frontend. You can manage them (create, edit, and delete) from the backend
using the Content/Menus section:

[image: ../_images/126.png]
Each menu item has localized name, URL, and position:

[image: ../_images/218.png]

URL

URL is where user is redirected when clicks the menu item.

Position

Position might be used to sort the menu items in the correct order within the menu.

Once menu is created, you can display it on the frontend using the built-in MenuViewComponent view component like this
(the menu code is passed as the parameter to identify the menu we want to display):

@await Component.InvokeAsync("Menu", new { code = "Main", additionalCssClass = "master-detail__menu" })

Or using the view component tag helper:

<vc:menu code="Main" additional-css-class="master-detail__menu" />

As you can see, an additional CSS class might be applied using the corresponding optional parameter.

The result can look something like this (note that the current menu item is highlighted):

[image: ../_images/313.png]
Menus are displayed using the built-in views
(_Menu [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Views/Shared/_Menu.cshtml] and
_MenuItem [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Views/Shared/_MenuItem.cshtml]).
The HTML elements have unique CSS classes (the BEM [https://getbem.com/] methodology is used), so it is easy
to apply styles to them:

<div class="menu master-detail__menu">
 <div class="menu__items">
 <div class="menu__item menu__item--active">
 Home
 </div>
 <div class="menu__item">
 About me
 </div>
 <div class="menu__item">
 Contacts
 </div>
 </div>
</div>

If you want to change the HTML, just copy these default views into your project and they will be used instead of the built-in ones,
so you will be able to modify them as you want.

Forms

Forms are used to get and process user input on the frontend. You can manage them (create, edit, and delete) from the backend
using the Content/Forms section:

[image: ../_images/124.png]
Each form has code, localized name, submit button title, and other fields:

[image: ../_images/216.png]

Code

Code might be used to get forms from code (see examples below).

Produce completed forms

The Produce completed forms checkbox allows to specify if you want completed forms to be created each time user fills the form.
You can review completed forms (user input) from the backend any time if they are created.

Form handler C# class name

Defines the implementation of the
IFormHandler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/FormHandlers/IFormHandler.cs#L13]
interface that will handle the user input for this form. There is the only one built-in implementation of this interface:
the EmailFormHandler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/FormHandlers/EmailFormHandler.cs#L19]
class. It sends the user input to the specified recipients by the email. You can write your own implementations
of this interface. For example, you can have form handler that creates comments using the user input on a blog post page.

Each form handler can have different (specified by the developer) parameters, which use different parameter editors.
Parameter editors might be created by the developer too. (The built-in form handler has two parameters: Recipient emails
and Redirect URL.)

Forms consist of fields. There are different types of fields (and you can add your own ones). Each field has type,
localized name, position, and other fields:

[image: ../_images/311.png]

Is required

Prevents user from submitting the form until this field contains value.

Max length

Prevents user from specifying a longer text value than allowed.

Position

Position might be used to sort the fields in the correct order within the form.

The fields of the type Drop down list also have user-defined options.

Once form is created, you can display it on the frontend using the built-in FormViewComponent view component like this
(the form code is passed as the parameter to identify the form we want to display):

@await Component.InvokeAsync("Form", new { code = "Feedback", additionalCssClass = "master-detail__form" })

Or using the view component tag helper:

<vc:form code="Feedback" additional-css-class="master-detail__form" />

As you can see, an additional CSS class might be applied using the corresponding optional parameter.

The result can look something like this:

[image: ../_images/44.png]
Forms are displayed using the built-in views
(_Form [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Views/Shared/_Form.cshtml] and
_Field [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Views/Shared/_Field.cshtml]).
The HTML elements have unique CSS classes (the BEM [https://getbem.com/] methodology is used), so it is easy
to apply styles to them:

<form class="form" action="/en/forms/send" enctype="multipart/form-data" method="post" novalidate="novalidate">
 <input name="formId" id="formId" type="hidden" value="1">
 <div class="form__field field">
 <label class="field__label label" for="field1">Your name</label>
 <input name="field1" class="field__text-box text-box" id="field1" type="text" maxlength="64" data-val-required="" data-val-maxlength-max="64" data-val="true">
 </div>
 <div class="form__field field">
 <label class="field__label label" for="field2">Your email</label>
 <input name="field2" class="field__text-box text-box" id="field2" type="text" maxlength="64" data-val-required="" data-val-maxlength-max="64" data-val="true">
 </div>
 <div class="form__field field">
 <label class="field__label label" for="field3">Your message</label>
 <textarea name="field3" class="field__text-area text-area" id="field3" maxlength="1024" data-val-required="" data-val-maxlength-max="1024" data-val="true"></textarea>
 </div>
 <div class="form__buttons buttons">
 <button class="buttons__button button" type="submit">Send</button>
 </div>
</form>

If you want to change the HTML, just copy the views into your project and they will be used instead of the built-in ones,
so you will be able to modify them as you want.

File Manager

File manager allows you to manage your files (upload and delete them) from the backend using the
Content/File manager section:

[image: ../_images/123.png]
Once a file is uploaded you can use it in different ways. You can copy a link to the file and paste it somewhere.
If it is an image, you can paste it in the HTML editor using the file selector (click the Insert/edit image
button and then the Browse one):

[image: ../_images/215.png]
Please note that if your class contains a member with the Image as the data type, you don’t need to upload an image
using the file manager manually. The image editor will upload, crop, and save the image for the object property automatically
(and the image path will be different: each object has its own images path that includes its identifier).

Classes

Classes are used to describe the objects. Using the members, they describe which properties should the objects have,
how these property values should be stored and edited in the backend, and how the objects are related to each other.
You can manage them (create, edit, and delete) from the backend using the Development/Classes section:

[image: ../_images/120.png]
Each class has optional parent class, code, name, and other fields:

[image: ../_images/212.png]

Parent class (abstract only)

If you select a parent class, your class will have all the tabs and members of that abstract class.
This feature helps to avoid copying the same members again and again. For example, it is good idea to have the Page abstract class
with such members, like URL, Content, Title, and META tags.
Also, abstract classes are used to group the objects in the Content/Objects section.

Code

It is the unique text identifier of the class.

Name

Name is used to identify the classes in the backend.

Pluralized name

Pluralized name is used in the Content/Objects section.

Is abstract

Specifies whether the class is abstract or not.

Tabs

Each class can have tabs. Tabs are used to group the object property editors on the create or edit object pages.
You can manage them (create, edit, and delete) from the backend using the Tabs section of the classes:

[image: ../_images/128.png]
Each tab has name and position:

[image: ../_images/220.png]

Name

Name is used to identify the tabs in the backend.

Position

Position is used to sort the tabs in the lists.

Members

Members are used to describe which properties and relations should the objects of a given class have.
You can manage them (create, edit, and delete) from the backend using the Members section of the classes:

[image: ../_images/125.png]
Each member has tab, code, name, and other fields:

[image: ../_images/217.png]

General/Tab

You can select a tab this member properties should belong to. All the properties of the members without a tab selected go under the General one.

General/Code

It is the unique text identifier of the member. This code is used in the different places, like sorting, mapping etc.

General/Name

Name is used to identify the members in the backend.

General/Position

Position is used to sort the members in the lists.

[image: ../_images/312.png]

Property/Property data type

Member can be a property or a relation. If you specify the property data type, member will be considered as a property.
Property data type allows to specify how to store the object property value (and which
raw storage data type [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Data.Entities/StorageDataTypes.cs#L6]
is used for that), how to display and edit it in the backend.

If a property data type is selected, data type parameters will be also displayed. Each data type can have unique parameters.
For example, it could be maximum text length for the text or width and height for the image.

[image: ../_images/45.png]

Relation/Relation class

If you specify the relation class, member will be considered as a relation. Relation selector will be displayed as the editor.
For example, user will be able to select a category for a blog post or assign tags to it. Also, if any relation class is selected,
additional fields will be displayed.

Is relation single parent

Specifies whether objects of this class can have the only one relation to the specified class (and this specified class will be considered
as the parent one for the current class). For example, if blog post page can have the only one category page, you can use this option.
In the object list, link to the blog post pages will appear in the category page rows, so all the created blog post pages will be automatically related
to the parent category page objects. If the checkbox is not set, there will be two separated lists of the objects: Category pages and Post pages,
and you will have to select a category page in every post page from the relation selector manually.

Relation/Min related objects number and Relation/Max related objects number

These fields allow to limit the number of the related objects. For example, you can specify that there should be 3-5 tags on every blog post page,
so user will not be able to create a blog post page without the tags, or to specify more than 5.

Endpoints

The purpose of the endpoints is to take some data provided by the data sources, represent it in some way (HTML, JSON, XML etc.),
and return as the response. They also handle access control and caching. You can manage them (create, edit, and delete) from the backend
using the Development/Endpoints section:

[image: ../_images/122.png]
Please note, that the default ASP.NET routing still works and it is executed before any endpoint.

Each endpoint has name, URL template, position, and other fields:

[image: ../_images/214.png]

General/Name

Name is used only in the endpoint list to identify endpoints.

General/URL template

URL template is used by the implementation of the
IEndpointResolver [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Services/Abstractions/IEndpointResolver.cs#L9]
interface to select the endpoint which should process current request (see below).

General/Position

Position is important, because the endpoint resolver [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/Services/Defaults/DefaultEndpointResolver.cs#L16]
checks the endpoints one by one, and it will return the first matching endpoint from the list, sorted by position.

[image: ../_images/310.png]

Access/Disallow anonymous

This checkbox allows you to specify whether a user must be authenticated in order to be able to get the response from this endpoint.
Once the checkbox is checked, the Required permissions list will appear so you can specify which permissions the user must have.

Access/Sign in URL

This URL will be used to redirect user if he must be authenticated or if a required permission is missing.

[image: ../_images/43.png]

Request processing/Request processor C# class name

It allows you to specify, which C# class (implementation of the
IRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/RequestProcessors/IRequestProcessor.cs#L15]
interface) will process the requests (convert request data and data provided by the data sources to the response). It is very important,
because you can write your own implementations of this interface. You can return HTML (using or not using views), JSON, files, plain text, redirects, or any other content.
There is the only one built-in request processor: the
DefaultRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/RequestProcessors/DefaultRequestProcessor.cs#L17]
one. It returns views the same way as ASP.NET controllers do (you can specify the view name using the parameter).

Please note that the endpoints process requests using the request processors, they do not (and should not) provide data for the responses.
In other words, they take prepared data and represent it in some way (HTML, JSON etc.). Data is provided to the endpoints by data sources.
Each endpoint can have different data sources at the same time.

[image: ../_images/52.png]

Response caching/Response cache C# class name

It allows you to specify, which C# class (implementation of the
IResponseCache [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/ResponseCaches/IResponseCache.cs#L14]
is used to cache the endpoint response. There are several built-in implementations of this interface [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Frontend/ResponseCaches],
but you can write your own ones.

Data Sources

Data sources provide the endpoints with data (end then endpoints represent that data in some way and return as the responses).
Data sources use the specified implementation of the IDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/DataProviders/IDataProvider.cs#L16]
interface to get, prepare, or generate data (it can be anything: the database records, weather forecast, some hardcoded text).
It can be useful because a developer can prepare different data providers that can be then used and combined by a user to provide all the required data for,
for example, the specific website pages. You can manage them (create, edit, and delete) from the backend using the Data sources
section of the endpoints:

[image: ../_images/121.png]
Each data source has code and data provider C# class name:

[image: ../_images/213.png]

Code

Code is used as the model property name. So, if you have specified some code,
your model (for example, a view model) will have a property with this name.

Data provider C# class

It allows you to specify, which C# class (implementation of the
IDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/DataProviders/IDataProvider.cs#L16]
interface) will provide data for this data source.

There are few built-in data providers.
PageObjectDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/DataProviders/PageObjectDataProvider.cs#L17]
loads the object by its URL property value.
ObjectsDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/DataProviders/ObjectsDataProvider.cs#L15]
loads the objects of the specified class.
RelatedObjectsDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/DataProviders/RelatedObjectsDataProvider.cs#L18]
loads the objects that are related to the one, which URL property value matches current request’s URL.

Advanced

	Custom Form Handlers

	Custom Data Sources

	Custom Endpoints

Custom Form Handlers

The Platformus.Website extension offers the great forms features. You can describe your forms in the backend,
and then render them and get user feedback on any frontend view. When user fills the form and clicks the Submit button,
data is sent to a server and might be processed in any way you want. User input is handled by the implementations of the
IFormHandler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/FormHandlers/IFormHandler.cs#L18] interface
which can return any IActionResult as the result.

The selected implementation receives the form object, all the user input (string values by field objects), and all the attachments
user has uploaded. Field values can be validated using the implementations of the
IFieldValidator [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/FieldValidators/IFieldValidator.cs#L15]
interface (you can use the
ReCaptchaFieldValidator [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/FieldValidators/ReCaptchaFieldValidator.cs#L15]
as an example).

Platformus has the only one built-in implementation of the IFormHandler interface:
the EmailFormHandler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/FormHandlers/EmailFormHandler.cs#L18] class.
It sends the user input to the specified email recipients.

Let’s implement our own form handler, which will just display the user input (but it could do anything else as well).
Create the DisplayUserInputFormHandler class inside the main web application project and implement the IFormHandler interface there:

public class DisplayUserInputFormHandler : IFormHandler
{
 public IEnumerable<ParameterGroup> ParameterGroups => new ParameterGroup[] { };
 public string Description => "Our own form handler.";

 public async Task<IActionResult> HandleAsync(HttpContext httpContext, string origin, Form form, IDictionary<Field, string> valuesByFields, IDictionary<string, byte[]> attachmentsByFilenames)
 {
 StringBuilder body = new StringBuilder();

 foreach (KeyValuePair<Field, string> valueByField in valuesByFields)
 body.AppendFormat("<p>{0}: {1}</p>", valueByField.Key.Name.GetLocalizationValue(), valueByField.Value);

 return new ContentResult() { Content = body.ToString() };
 }
}

Now, when our form handler class is added, navigate to the backend’s Content/Forms section and create or edit a form:

[image: ../../_images/119.png]
Please note, that our new form handler C# class is automatically resolved and added to the drop down list. Click the Save button.

Now navigate to /en/contacts and fill out the form:

[image: ../../_images/211.png]
Click the Send button. Output from our form handler is displayed:

[image: ../../_images/39.png]
We could return some view, redirect, or any other action result we need.

Form Handler Parameters and Parameter Groups

As well as the endpoints and data sources, form handlers support parameters and parameter groups. The implementation is absolutely the same,
so please just take a look at the endpoints for the sample. Also, please take a look at the
built-in form handler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/FormHandlers/EmailFormHandler.cs#L56]
to see how it gets the parameter value.

Custom Data Sources

As we know, data providers are used by data sources to provide endpoints with data.
It is a regular C# class that implements the IDataProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/DataProviders/IDataProvider.cs#L16]
interface. There are several built-in data providers [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Frontend/DataProviders],
but all of them work with the objects. Let’s create a custom one that will just provide a hardcoded text.

Create the MyDataProvider class inside the main web application project and implement the IDataProvider interface:

public class MyDataProvider : IDataProvider
{
 public string Description => "Provides the hardcoded values.";

 public IEnumerable<ParameterGroup> ParameterGroups => new ParameterGroup[] { };

 public async Task<dynamic> GetDataAsync(HttpContext httpContext, DataSource dataSource)
 {
 ExpandoObjectBuilder expandoObjectBuilder = new ExpandoObjectBuilder();

 expandoObjectBuilder.AddProperty("Value", "Some hardcoded value from our custom data source.");
 return expandoObjectBuilder.Build();
 }
}

Now, when our data provider class is added, navigate to the backend’s Development/Endpoints section, then to the data source list of the Default endpoint,
and create one more data source:

[image: ../../_images/117.png]
Please note, that our new data provider C# class is automatically resolved and added to the drop down list. Click the Save button. Data source is created:

[image: ../../_images/29.png]
All the regular pages now have the Hardcoded property inside their view models (thanks to the
DefaultRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/RequestProcessors/DefaultRequestProcessor.cs#L17]
request processor; your own request processor might act in a different way to process provided data).

Let’s update the RegularPage.cshtml view to display the value from our new data source:

<p>@Model.Hardcoded.Value</p>

Run the web application and check the output:

[image: ../../_images/37.png]
Good. Everything works as expected.

Data Source Parameters and Parameter Groups

As well as the form handlers and endpoints, data providers support parameters and parameter groups. The implementation is absolutely the same,
so please just take a look at the endpoints for the sample. Also, please take a look at the
built-in data providers [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Website.Frontend/DataProviders]
to see how they get the parameter values.

Custom Endpoints

As we know, endpoints process the requests and prepare responses using the data provided by the data sources.
Endpoints use the implementation of the IRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/RequestProcessors/IRequestProcessor.cs#L15]
interface for that. It can return any IActionResult. The idea is that by changing the request processor class you can represent data in a different way.
That’s why the request processor shouldn’t provide data itself but use the one provided with data sources.

The only one built-in implementation of the IRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website/RequestProcessors/IRequestProcessor.cs#L15]
interface (the DefaultRequestProcessor [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Website.Frontend/RequestProcessors/DefaultRequestProcessor.cs#L17]
class) returns Razor views with the view model combined from the data provided by the data sources. Let’s create our own request processor which will return JSON instead:

public class MyRequestProcessor : IRequestProcessor
{
 public IEnumerable<ParameterGroup> ParameterGroups => new ParameterGroup[] { };
 public string Description => "Returns data as JSON.";

 public async Task<IActionResult> ProcessAsync(HttpContext httpContext, Platformus.Website.Data.Entities.Endpoint endpoint)
 {
 dynamic viewModel = await this.CreateViewModelAsync(httpContext, endpoint);

 if (viewModel == null)
 return null;

 return new JsonResult(viewModel);
 }

 private async Task<dynamic> CreateViewModelAsync(HttpContext httpContext, Platformus.Website.Data.Entities.Endpoint endpoint)
 {
 ExpandoObjectBuilder expandoObjectBuilder = new ExpandoObjectBuilder();

 foreach (DataSource dataSource in endpoint.DataSources)
 {
 dynamic viewModel = await this.GetDataProvider(dataSource).GetDataAsync(httpContext, dataSource);

 if (viewModel == null)
 return null;

 expandoObjectBuilder.AddProperty(dataSource.Code, viewModel);
 }

 return expandoObjectBuilder.Build();
 }

 private IDataProvider GetDataProvider(DataSource dataSource)
 {
 return StringActivator.CreateInstance<IDataProvider>(dataSource.DataProviderCSharpClassName);
 }
}

Now, when our request processor class is added, navigate to the backend’s Development/Endpoints section and change the default endpoint’s
request processor C# class name:

[image: ../../_images/118.png]
Please note, that our new request processor C# class is automatically resolved and added to the drop-down list. Click the Save button.

Now navigate to /en/about and our new request processor will process the request:

[image: ../../_images/210.png]
Good. Everything works as expected.

Endpoint Parameters and Parameter Groups

Now let’s assume that we want to make it possible to specify the data format for our request processor output.
It can be done using the parameters. Override the ParameterGroups property in our endpoint class:

public IEnumerable<ParameterGroup> ParameterGroups => new ParameterGroup[]
{
 new ParameterGroup(
 "Serialization",
 new Parameter(
 "Format",
 "Format",
 ParameterEditorCodes.RadioButtonList,
 new Option[] {
 new Option("JSON", "json"),
 new Option("XML", "xml")
 }
)
)
};

This property just returns the parameter groups. Each of them can contain different parameters defined by developer.
When user selects the request processor C# class, these parameters will be available for him. Parameters can have different editor types.
All the built-in ones are defined inside the
ParameterEditorCodes [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core/Constants/ParameterEditorCodes.cs#L9] enum,
but you can also add your own ones. Using the parameter’s code, you will be able to get the value entered by a user.

Let’s update also the Description property to indicate that now we can return either JSON or XML:

public override string Description => "Returns data as JSON or XML.";

Description is also presented to a user when the request processor is selected.

Now open our endpoint in the backend one more time:

[image: ../../_images/38.png]
The request processor parameter is displayed. Let’s see how to get and use the selected value from the code:

public async Task<IActionResult> ProcessAsync(HttpContext httpContext, Platformus.Website.Data.Entities.Endpoint endpoint)
{
 dynamic viewModel = await this.CreateViewModelAsync(httpContext, endpoint);

 if (viewModel == null)
 return null;

 string format = new ParametersParser(endpoint.RequestProcessorParameters).GetStringParameterValue("Format");

 if (format == "json")
 return new JsonResult(viewModel);

 XDocument document= new XDocument(
 new XElement("someKey", "Some value")
);

 return new ContentResult() { Content = document.ToString(), ContentType = "application/xml" };
}

Please note that we only use the hardcoded XML here, because converting dynamic object into an XML might look complex and isn’t a subject of the article.

Now if you change the data format in the backend, the endpoint output will also be changed:

[image: ../../_images/42.png]

Platformus.ECommerce

Implements standard ecommerce features like categories, products, photos, carts, and orders in a very basic way.
Can be used as a starting point for ecommerce projects.

Admin Panel Sections

	Categories

	Products

	Carts

	Orders

	Order States

	Delivery Methods

	Payment Methods

Packages

	Platformus.ECommerce [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce]

	Platformus.ECommerce.Backend [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce.Backend]

	Platformus.ECommerce.Data.Entities [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce.Data.Entities]

	Platformus.ECommerce.Data.EntityFramework.PostgreSql [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce.Data.EntityFramework.PostgreSql]

	Platformus.ECommerce.Data.EntityFramework.Sqlite [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce.Data.EntityFramework.Sqlite]

	Platformus.ECommerce.Data.EntityFramework.SqlServer [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce.Data.EntityFramework.SqlServer]

	Platformus.ECommerce.Frontend [https://github.com/Platformus/Platformus/tree/master/src/Platformus.ECommerce.Frontend]

Categories

Products

Carts

Orders

Order States

Delivery Methods

Payment Methods

Platformus.Images

Provides basic image processing (cropping and resizing).

Packages

	Platformus.Images [https://github.com/Platformus/Platformus/tree/master/src/Platformus.Images]

Custom Extensions

It is not difficult to develop a custom Platformus CMS extension. You can add dependency on any C# project in your Platformus-based application
like in any other ASP.NET app, controllers and other features will work as you expect. But Platformus provides you with some public API,
so you can extend it, add backend (admin panel) sections, security policies etc.

There are 2 main purposes to have custom Platformus extensions.

	You can have all your code in the isolated projects, so CMS itself can be updated independently.

2. You can decrease development time reusing code and combining your apps from the existing parts. It could be useful when you develop a lot of apps
and have standard approaches of fixing standard tasks. For example, most of the apps have authentication part, some Firebase cloud messaging features.
Many of them also have chats on SignalR.

As Platformus CMS is built on top of the ExtCore framework [https://extcore.net/], you can use your custom extension in the different ways:
as NuGet packages, source code, or even DLL-files.

	Backend Dashboard Widgets

	Backend Menu

	Backend Styles and Scripts

	Embedded Resources

	Styles and Scripts Minification

	Tutorial: Creating a Custom Extension

Backend Dashboard Widgets

Most of the apps have some key metrics, analytics, or statistics that should be available in a fast and convenient way.
It could be number of the registered users or orders for the last week, sales amount etc.

The home page of the Platformus CMS backend (admin panel) is a dashboard where you can add your own widgets.
Each widget is a regular view component [https://learn.microsoft.com/en-us/aspnet/core/mvc/views/view-components],
so it has its own view and can look and behave in any way.

To add your view component(s) to the dashboard you need to implement the
IMetadata [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/IMetadata.cs#L9] interface.
It is preferable to use the MetadataBase [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/MetadataBase.cs#L9]
class to be able to override only the methods you want:

public class MyMetadata : MetadataBase
{
 public override IEnumerable<DashboardWidget> GetDashboardWidgets(HttpContext httpContext)
 {
 return new DashboardWidget[]
 {
 new DashboardWidget("MyViewComponent", 1000)
 };
 }
}

This file can be placed anywhere in the project, it will be resolved automatically by the
default implementation [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/DefaultDashboardWidgetsProvider.cs#L11] of the
IDashboardWidgetsProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/IDashboardWidgetsProvider.cs#L9] interface.

Let’s look at the DashboardWidget [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/DashboardWidget.cs#L6] class’s properties.

ViewComponentName is the view component name.

Position is used to sort the widgets. Widgets with a lower position are placed higher.

Backend Menu

When you develop a custom Platformus CMS extension you might need to add items to the backend (admin panel) menu.
All the backend menu groups and items are defined in the extensions. Each extension can provide one or more implementations of the
IMetadata [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/IMetadata.cs#L9] interface which allows to specify,
among other things, the menu items grouped by the menu groups. It is preferable to use the
MetadataBase [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/MetadataBase.cs#L9] class
to be able to override only the methods you want:

public class MyMetadata : MetadataBase
{
 public override IEnumerable<MenuGroup> GetMenuGroups(HttpContext httpContext)
 {
 IStringLocalizer<Metadata> localizer = httpContext.GetStringLocalizer<Metadata>();

 return new MenuGroup[]
 {
 new MenuGroup(
 localizer["My Group"],
 1000,
 new MenuItem[]
 {
 new MenuItem("icon--icon1", "/backend/something-1", localizer["Something 1"], 1000, "ManageSomething1"),
 new MenuItem("icon--icon2", "/backend/something-2", localizer["Something 2"], 2000, "ManageSomething2"),
 new MenuItem("icon--icon3", "/backend/something-3", localizer["Something 3"], 3000, "ManageSomething3")
 }
),
 };
 }
}

This file can be placed anywhere in the project, it will be resolved automatically by the
default implementation [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/DefaultMenuGroupsProvider.cs#L18] of the
IMenuGroupsProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/IMenuGroupsProvider.cs#L9] interface.

If the provided menu group’s name matches name of the existing one, the menu items of both will be merged into the single group according to the menu item positions.

Let’s look at the MenuItem [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/MenuItem.cs#L8] class’s properties.

CssClass allows to specify the CSS class that will be added to the menu item HTML tag. Intended to provide a custom icon but can also be used to apply another styling.

Url is the URL where user is navigated when clicks the menu item.

Name is displayed in the menu.

Position is used to sort the menu items (and menu groups). Items with a lower position are placed higher.

PermissionCodes contains an array of the codes of the permissions which are required for user to have in order to see the menu item.

Backend Styles and Scripts

When you develop a custom Platformus CMS extension you might need to add your own CSS styles and JavaScript scripts on the backend (admin panel) pages.
Same as for the menu, it can be done by implementing the
IMetadata [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/IMetadata.cs#L9] interface or inheriting the
MetadataBase [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/MetadataBase.cs#L9] class.

Please, take a look at the implementation [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata.cs#L14]
from the Platformus.Core extension for a sample.

This file can be placed anywhere in the project, it will be resolved automatically by the
default implementation [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/DefaultStyleSheetsProvider.cs#L15] of the
IStyleSheetsProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/IStyleSheetsProvider.cs#L9] interface and the
default implementation [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/DefaultScriptsProvider.cs#L15] of the
IScriptsProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Metadata/Providers/IScriptsProvider.cs#L9] interface.

It is preferable to use links to minified CSS and JavaScript files to save traffic and speed up page loading.
Also, you might need to embed these files into your extension to make it atomic.

Embedded Resources

Usually, your extension might need some resources (images, CSS, or JavaScript files etc.). You can add them to the host web application as regular static files,
but in most cases, you would like your extensions to be atomic, especially if they are distributed as NuGet packages. It can be done by defining the resources
that should be embedded in your *.csproj file:

<ItemGroup>
 <EmbeddedResource Include="wwwroot**" />
</ItemGroup>

After the resource is embedded, the underlying ExtCore framework will make it available using the HTTP requests. For example,
if you embed a file as /wwwroot/images/photo.jpg, it will be available as /wwwroot.images.photo.jpg.

Please look how the static files are embedded [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Platformus.Core.Backend.csproj#L22]
and then used [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/Areas/Backend/Styles/checkbox.css#L27]
in the standard Platformus.Core extension.

Styles and Scripts Minification

Good practice is to minimize number of the HTTP requests by combining the CSS and JavaScript files.
Also, these files can be minified to reduce their size by removing extra spaces, line breaks, replacing long variable names with the shorter ones etc.
(The JavaScript files could be also obfuscated, which makes reverse engineering much harder.)

By default, Platformus uses the BundlerMinifier.Core [https://www.nuget.org/packages/BundlerMinifier.Core] package for that.
To start using it add the corresponding reference to your *.csproj file:

<ItemGroup>
 <DotNetCliToolReference Include="BundlerMinifier.Core" Version="3.2.449" />
</ItemGroup>

Now, add the following lines to the same project file to run the bundling and minification process automatically on build:

<Target Name="PrecompileScript" BeforeTargets="BeforeBuild">
 <Exec Command="dotnet bundle" />
</Target>

Finally, the BundlerMinifier.Core package needs the bundleconfig.json file to be present in the project’s root folder:

[
 {
 "outputFileName": "wwwroot/areas/backend/css/output.min.css",
 "inputFiles": [
 "Areas/Backend/Styles/input1.css",
 "Areas/Backend/Styles/input2.css",
 "Areas/Backend/Styles/input3.css"
]
 },
 {
 "outputFileName": "wwwroot/areas/backend/js/output.min.js",
 "inputFiles": [
 "Areas/Backend/Scripts/input1.js",
 "Areas/Backend/Scripts/input2.js",
 "Areas/Backend/Scripts/input3.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 },
 "sourceMap": false
 }
]

In this file you can specify which files and how exactly should be minified and combined.
You can use the bundleconfig.json [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Core.Backend/bundleconfig.json]
file from the Platformus.Core extension as a sample.

Tutorial: Creating a Custom Extension

When you create a Platformus-based application, unless it’s something quite simple, you’ll probably need to create your own Platformus extension.
It will contain everything that is related to your app (entities, models, DTOs, services, APIs, UI etc.) to keep it separated and independent from the basic CMS.

Creating an extension is simple. We will go through all the aspects and create a sample mobile app backend with authentication
(phone number validation using a fake code from SMS), categories and products API, and corresponding admin panel sections to manage categories and products etc.

Preparing the Solution

Let’s start from the beginning. First, please follow the Using as the NuGet Packages tutorial
to create an empty ASP.NET Core Platformus-based web application but keep only the Platformus.WebApplication and Platformus.Core packages dependencies
as we do not need the others.

Recommended Solution Structure

You can organize your code in an any way you want, but it is recommended to use the following solution structure.

WebApplication

It is the executable main web application. It provides logging, configuration, stores static content, initializes Platformus.

Shouldn’t be referenced from another projects.

WebApplication.Frontend

Contains everything related to the frontend: DTOs and view models, APIs with authentication configuration and validation rules, views, pages etc.

Shouldn’t be referenced from other projects except the WebApplication one.

WebApplication.Backend

Contains everything related to the backend (admin panel): DTO and view models, controllers, views, pages etc.

Shouldn’t be referenced from other projects except the WebApplication one.

WebApplication.Domain.Models

Contains only the domain models.

WebApplication.Domain.Abstractions

Contains the domain service interfaces (for those models which do not use and need to replace the generic domain service provided by the Magicalizer).

WebApplication.Domain.Defaults

Contains the domain service implementations (for those models which do not use and need to replace the generic domain service provided by the Magicalizer).

WebApplication.Data.Entities

Contains only the entities.

WebApplication.Data.Abstractions

Contains the repository interfaces (for those entities which do not use and need to replace the generic repository provided by the Magicalizer).

WebApplication.Data.EntityFramework.SqlServer

Contains the repository implementations for the specific database (for those entities which do not use and need to replace
the generic repository provided by the Magicalizer) and the Entity Framework context configuration.

Index

 _static/up.png

_static/up-pressed.png

_images/117.png
@ Create Data Source | Platformus X +
<& C O localhost:1234/backend/datasources/create?endpoint.id=1
J Platformus Create Data Source
Content v Code
Hardcoded
Ecommerce @
Data provider C# class name
Audience o WebApplication.MyDataProvider
Administration v

Development
R Classes

& Endpoints

Administrator

@ Sign out

required

required

~

2 % O M

_images/118.png
@ Edit Endpoint | Platformus x +

<« C ® localhost:1234/backend/endpoints/edit/1 2 % R O M

_| Platformus Edit Endpoint

Content ~ General Access Request processing Response caching
v

Ecommerce Request processor C# class name required

WebApplication.MyRequestProcessor v

Audience v

Administration v

Development ~

R Classes

& Endpoints

Administrator ~

@ Sign out

_images/115.png
@ Roles | Platformus X o+
<& C @ localhost:1234/backend/roles
_| Platformus Roles
Content v All permissions. v
Audience & Name Position ~
92 Permissions Developer 100
Roles Administrator 200
P

vsers Content manager 300
Administration v

1—3from3 By10 v

Development v
Administrator ~

@ Sign out

_images/116.png
v = o X
@ Users | Platformus. x +

< C @ localhost:1234/backend/users

_| Platformus Users

Content v Al roles v
Rudience ~ Created from to

1= Permissions

& Roles Name) v Created

Users Administrator 1/1/2017 2:00:00 AM

Administration v 1—1from1 By10 v
Development v
Administrator ~

@ Sign out

_images/120.png
v - (m}] X
@ Classes | Platformus x +

< C @ localhost:1234/backend/classes
_| Platformus Classes
Content v All parent classes v
Audience Y Parent class Name v Isabstract
Administration v - Page ¥es
Page Regular Page No
Development ~
% Classes 1—2from2 By10 v
& Endpoints
Administrator ~

@ Sign out

_images/121.png
@ Data Sources | Platformus x + v - 0 X
< C ® localhost1234/backend/datasources?endpoint.id=1 e % RO :
_| Platformus Data Sources + create datasource | | Back |
Content 4

Rudience v Code ~ Data provider C# class name

P —— o Page Platformus.Website.Frontend.DataProviders.PageObjectDataProvider

Development ~ 1—1from1 By10 v
% Classes

& Endpoints

Administrator ~

@ Sign out

_images/119.png
@ Edit Form | Platformus

x4

<& C O localhost:1234/backend/forms/edit/1

_| Platformus

Content
& Objects
0 Menus
E Forms

® File manager
Audience
Administration

Development

Administrator

@ Sign out

Edit Form

~ Code
Feedback
Name
Feedback
O6patHas cesisb
3B0POTHMI 38'30K
v
Submit button title
v Submit
OTnpasuTL
v
Hapicnatn
v Produce completed forms
Form handler C# class name
WebApplication.DisplayUserinputFormHandler

required

required

=

required

required

~

_images/12.png
v - X
@ Endpoints | Platformus. x + E

€ > C O localhost1234/backend/endpoints CER- N 3
_| Platformus Endpoints
Content ™ Name URL template
Audience h Name URL template Position v
Administration o Contacts contacts 10
Development ~

Default frurly 1000
R Classes
& Endpoints 1—3from3 Byl0 v
Administrator ~

@ sign out

_images/122.png
v = o X
@ Endpoints | Platformus. x +

<« C @ localhost:1234/backend/endpoints 2 % R O M
_| Platformus Endpoints
Content @
Audience e Name URL template Position v
Administration o Contacts contacts 10

Default furl) 1000
Development ~
% Classes 1—2from2 By10 v
& Endpoints
Administrator ~

@ Sign out

_images/123.png
@ File Manager | Platformus x +
< C O® localhost:1234/backend/filemanager
J Platformus File Manager
Content &
@ Objects

Name
0 Menus

photo.jpg
B Forms
® File manager
Audience v
Administration v

v

Development

Administrator

@ Sign out

v Size

805426

@ ...or select them on your device

2 % * O M

1—1from1

By10 v

_static/minus.png

_static/plus.png

_static/file.png

_images/124.png
@ Forms | Platformus x +
< C @ localhost:1234/backend/forms

_| Platformus Forms

Content ~ Feedback

& Objects Your name Text box

0 Menus Your email Text box

E Forms Your message Text area

® File manager

Audience

Administration

Development

Administrator

@ Sign out

+ Create field
.

2 % * O M

nav.xhtml

 Table of Contents

 		
 Platformus CMS

 		
 Getting Started

 		
 Samples

 		
 Using as the NuGet Packages

 		
 Using as the Source Code

 		
 Database Scripts

 		
 Tutorial: Basic Content Management

 		
 Fundamentals

 		
 Platformus.Core

 		
 Permissions

 		
 Roles

 		
 Users

 		
 Configurations

 		
 Cultures

 		
 Platformus.Website

 		
 Objects

 		
 Menus

 		
 Forms

 		
 File Manager

 		
 Classes

 		
 Tabs

 		
 Members

 		
 Endpoints

 		
 Data Sources

 		
 Advanced

 		
 Custom Form Handlers

 		
 Custom Data Sources

 		
 Custom Endpoints

 		
 Platformus.ECommerce

 		
 Categories

 		
 Products

 		
 Carts

 		
 Orders

 		
 Order States

 		
 Delivery Methods

 		
 Payment Methods

 		
 Platformus.Images

 		
 Custom Extensions

 		
 Backend Dashboard Widgets

 		
 Backend Menu

 		
 Backend Styles and Scripts

 		
 Embedded Resources

 		
 Styles and Scripts Minification

 		
 Tutorial: Creating a Custom Extension

_images/127.png
v - (m}] X

@ Regular Pages | Platformus X o+

< C @ localhost:1234/backend/objects?class.id=2 e % * O M :
| Platformus Objects Regular Pages
Content ~ Pages ~ URL

& Objects 3¢ Regular Pages /

O Menus /about-me

B Forms Jcontacts

® File manager
1—3from3 By10 v

Audience v
Administration v
Development v
Administrator ~

@ Sign out

_images/128.png
v = o X
@ Tabs | Platformus X o+

< C @ localhost:1234/backend/tabs?class.id=1

_| Platformus Tabs

Content @

Audience Y Name Position e
Administration v g0 100

Development ~ 1—1from1 Byl0 v
% Classes

& Endpoints

Administrator ~

@ Sign out

_images/125.png
@ Members | Platformus x +
< C @ localhost:1234/backend/members?class.id=1
_| Platformus Members
Content @
Audience v Name
Administration v URL

Content
Development ~

Title

% Classes

& Endpoints

Administrator

@ Sign out

META description

META keywords

Property Data Type

single line plain text

Html

single line plain text

single line plain text

single line plain text

Relation Class

(m}]

2 % * O M

Ip—

Position

0

1000

1010

1020

1—5from5

By10 v

X

_images/126.png
@ Menus | Platformus x +

< C @ localhost:1234/backend/menus

_| Platformus Menus

Content ~ Main

@ Objects Home

© venus
B Forms About me

B e
Audience o Contacts
Administration v

B v

Administrator

@ Sign out

2 % * O M

_images/15.png
@ Create Endpoint | Platformus x +

<« C © localhost:1234/backend/endpoints/create 2 % R O M

_| Platformus Create Endpoint

Content ~ General Access Request processing Response caching
i v
Audience Name required
Blog
Administration v

URL template

Development ~ blog
% Classes
Position
& Endpoints _ B B
Administrator ~

@ Sign out

_images/16.png
v - 0 X
@ Create Endpoint | Platformus x +
<& C O localhost:1234/backend/endpoints/create
J Platformus Create Endpoint
Content @ General Access Request processing Response caching
Rudience e Request processor C# class name required
Platformus Website.Frontend.RequestProcessors.DefaultReq... v
Administration v
Development ~ General
B @ View name
& Endpoints BlogPage
Administrator ~

@ Sign out

_images/13.png
@ Create Data Source | Platformus X +
< C @ localhost:1234/backend/datasources/create?endpoint.id=3
J Platformus Create Data Source
Content v Code required
Page
Audience v
Data provider C# class name required
Administration o Platformus Website.Frontend.DataProviders.PageObjectDat... v
Development ~
R Classes
& Endpoints
Administrator ~

@ Sign out

_images/14.png
@ My First Blog Post x +

<« C @ localhost:1234/en/blog/my-first-blog-post

Home
Ab Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
out me) o)) . I .)
=S enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
C in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
ontacts - o PR
s sunt in culpa qui officia deserunt mollit anim id est laborum.
. 11/30/2022 10:00:00 PM
English
Pycckuit
YkpaiHcbka

® You, 2022

_images/17.png
@ Create Data Source | Platformus X +
< C @ localhost:1234/backend/datasources/create?endpoint.id=4
J Platformus Create Data Source
Content o Code required
Posts
Audience v
Data provider C# class name required
Administration - Platformus.Website.Frontend.DataProviders.ObjectsDataPro.. v

Development
R Classes

& Endpoints

Administrator

@ Sign out

General

Class of the objects to load

Post Page

2 % * O M

_images/18.png
@ Blog x 4+
<« G © localhost1234/en/blog

Blog

My First Blog_Post

Home

About me

M Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor

English in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,

Pycckuit sunt in culpa qui officia deserunt mollit anim id est laborum.

-

LHiE 11/30/2022 10:00:00 PM

® You, 2022

_images/19.png
Create a new project Search for templates (Alt+S) p-

Recent project templates All languages < Al platforms ~ Al project types -

Alist of your recently accessed templates will be

s
displayed here. = it

A project template for creating an ASPNET Core application with example ASP.NET
Core Razor Pages content

C# Linx macOS Windows Cloud Service Web

@ Blazor Server App

A project template for creating a Blazor server app that runs server-side inside an
ASPINET Core app and handles user interactions over a SignalR connection. This
template can be used for web apps with rich dynamic user interfaces (Uls).

C# Linx macOS Windows Blazor Cloud Web

Ei ASPINET Core Web APl
A project template for creating an ASPNET Core application with an example

Controller for a RESTful HTTP service. This template can also be used for ASPNET
Core MVC Views and Controllers.

C# Linx mac0S Windows Cloud Service Web WebAPI

ce

n&! Class Library
218 A projectfor creating a class library that targets NET or NET Standard

C# Android Linux macOS Windows Library

w=mCs ASP.NET Core Empty
An empty project template for creating an ASPNET Core application. This template

_images/210.png
@ localhost:1234/en/about-us X o+

<« C @ localhost:1234/en/about-us 2 % * O M

{"Page":{"Id":1,"ClassId":2,"Url":"/about-us","Content": "\u@@3Ch1\u@3EAbout Us\ue@3C/h1\u@@3E\uee3Cp\uee3EHello! This is your ecommerce website, it is based on the \u@@3Ca
href=\u@@22https://platformus.net/\u0@22 target=\u@022_blank\ub@22 rel=\u@B22noopener\u022\u@B3EPlatformus\u@@3C/a\uBd3E content management system. You can manage it (create pages, menu items,
forms and so on) using the \u@@3Ca href=\u0@22/backend\u0022\u@03Ebackend\uo@3C/a\u@@3E. Please use the username and password specified during the installation to sign in (it is

\ue261dquo; adnin@platformus .net\u@26rdquo; and \ube261dquo;admin\u@e26rdquo; by default).\ud@3C/p\u@o3E\ud@3Cp\uB@3EPlease use the \ud@3Ca href=\u@022http://docs.platformus.net/\ueo22
target=\u0022_blank\u@@22 rel=\u@@22noopener\u6022\u@@3Edocumentation\ud@3C/a\uBO3E to learn more about Platformus and how to use it. There are several examples that could be useful for the
beginners. Also, you can get help in our \u@@3Ca href=\u@@22https://gitter.im/Platformus/Platformus\ue@22 target=\u0@22_blank\ue022
rel=\u@@22noopener\ud@22\u@O3Echat \uB@3C/a\uBG3E . \udB3C/p\uGO3E\uOB3CP\uBO3EHave a nice work!\u@@3C/p\u@@3E","Title":"About Us","MetaDescription

"MetaKeywords

_images/211.png
B < B Contacts X 4+ v

é % O ﬁh localhost:5000/en/contacts

Contacts

Add your contacts on this page. Phone number, messengers, social links. The feedback from
below (by the way, you can edit or move it to a different place) allows your visitors to write
you directly from the website, just don’t forget to specify the email address for the messages.

Feedback from

Your name

My name

Home Your email
About me My email

ContaCtS Your message

My message

English
Pycckuin
YKpaiHCcbka

© You, 2017

_images/2.png
@ Members | Platformus X o+
< C @ localhost:1234/backend/members?class.id=1
_| Platformus Members
Content @
Audience v Name
Administration v URL

Content
Development ~

Title

% Classes

& Endpoints

Administrator

@ Sign out

META description

META keywords

Property Data Type

Single line plain text

Html

Single line plain text

Single line plain text

Single line plain text

Relation Class

[m]

B % o O M

Ip—

Position

10

1000

1010

1020

1—5from5

By10 v

X

_images/21.png
Additional information

ASP.NET Core Web App C# linux macOS Windows Cloud Service

Framework @

NET 7.0 (Standard Term Support) -

Authentication type @
None -

Configure for HTTPS @
["] Enable Docker ®
(6]

["] Do not use top-level statements @

Back

_images/214.png
v
@ Edit Endpoint | Platformus x +

<« C ® localhost:1234/backend/endpoints/edit/1 2 % R O M

_| Platformus Edit Endpoint

Content ~ General Access Request processing Response caching
i v
Audience Name required
Default
Administration v

URL template

Development ~ Furl)
% Classes
Position
& Endpoints _ — B
Administrator ~

@ Sign out

_images/215.png
@ Edit Regular Page | Platformus X

& > C O localhost:1234/backend/objects/edit/12class.id=2 2 % * O M :
Platformus Edit Regular Page
Content ~ G .
File Selector
& Objects
URI)
0 Menus Name Size
/
® File manager (&5
Ec E
Audience v
Administration v Y
Development v He -eate pages, menu items, forms and so
or @platformus.net” and “admin” by
de
Pl d be useful for the beginners. Also,
yc
Hi

_images/212.png
@ Edit Class | Platformus x +

<« C @ localhost:1234/backend/classes/edit/2 2 % * O M

_| Platformus Edit Class

Parent class (abstract only)

Content @
Page v
Audience v
Code required
T a RegularPage
Administration N < 9
Name required
Development ~
Regular Page
2% Classes
Pluralized name required
& Endpoints
Regular Pages
Is abstract
Administrator ~

@ Sign out

_images/213.png
@ Edit Data Sources | Platformus X +
<« C @ localhost:1234/backend/datasources/edit/1?endpoint.id=1
J Platformus Edit Data Sources
Content v Code required
Page
Audience v
Data provider C# class name required
Administration o Platformus Website.Frontend.DataProviders.PageObjectDat... v

Development
R Classes

& Endpoints

Administrator

@ Sign out

2 % * O M

_images/217.png
v = o X
@ Edit Member | Platformus x +

<« C @ localhost:1234/backend/members/edit/17classid=1 2 % * O M

_| Platformus Edit Member

Content ~ General Property Relation
i v
Audience Tab
Tab not specified v
Administration v
Code required
Development & url
2% Classes
Name required
& Endpoints URL
Position
- 1 +
Administrator ~

@ Sign out

_images/218.png
@ Edit Menu Item | Platformus x +

<« C © localhost:1234/backend/menuitems/edit/1 2 % O M

_| Platformus Edit Menu Item

Content ~ Name required
Home =]
& Objects
MasHas =
0 Menus
TonoeHa =
B Forms
® File manager URL required
/
Audience v
Position
Administration v - 10 +
Development v
Administrator ~

@ Sign out

_images/216.png
@ Edit Form | Platformus x +

<& C O localhost:1234/backend/forms/edit/1

_| Platformus Edit Form

content ~ Code required
Feedback
@ Objects
O Menus Name required
Feedback =]
E Forms
O6paTHas cessb =
® File manager
3BOPOTHMIA 38'A30K =
Audience v
Submit button title required
Administration v Subnit =
OtnpasuTs =
Development v
Hapicnatu =
+ Produce completed forms
Form handler C# class name required
Platformus Website.Frontend.FormHandlers.EmailFormHan... v
General
Recipient emails (separated by commas)
test@test.com
Redirect URL
Administrator ~ /thank-you

@ Sign out

_images/220.png
v = o X
@ Edit Tab | Platformus x +

<« C ® localhost:1234/backend/tabs/edit/12class.id=1 2 % * O M :
_| Platformus Edit Tab
Content v Name required
SEO
Audience v
Position
- +
Administration v LS
Development ~
% Classes
& Endpoints
Administrator ~

@ Sign out

_images/23.png
@ Edit Regular Page | Platformus X +

<« C @ localhost:1234/backend/objects/edit/17class.id=2 2 % R O M

_| Platformus Edit Regular Page

Content ~ General SEO
& Objects
URL
O Menus
/
B Forms
® File manager Content
Edit Insert View Format Table Tools =]
Audience v Formats~ B 71 iz
Administration ¥ Your Personal Blog
Development M Hello! This is your personal blog, it is based on the Platformus content management system. You can manage it (create pages, menu items, forms and so
on) using the backend. Please use the username and password specified during the installation to sign in (it is “admin@platformus.net” and “admin” by
default).

Please use the documentation to learn more about Platformus and how to use it. There are several examples that could be useful for the beginners. Also,
you can get help in our chat.

Have a nice work!

_images/219.png
@ Edit Regular Page | Platformus X +

<« C @ localhost:1234/backend/objects/edit/17class.id=2 2 % R O M

_| Platformus Edit Regular Page

Content ~ General SEO
& Objects
URL
O Menus
/
B Forms
® File manager Content
Edit Insert View Format Table Tools =]
Audience v Formats~ B 71 iz
Administration ¥ Your Personal Website
Development M Hello! This is your personal website, it is based on the Platformus content management system. You can manage it (create pages, menu items, forms and
so on) using the backend. Please use the username and password specified during the installation to sign in (it is “admin@platformus.net” and “admin” by
default).

Please use the documentation to learn more about Platformus and how to use it. There are several examples that could be useful for the beginners. Also,
you can get help in our chat.

Have a nice work!

_images/22.png
Additional information

ASP.NET Core Web App C# linux macOS Windows Cloud Service

Framework @

NET 7.0 (Standard Term Support) -

Authentication type @
None -

Configure for HTTPS @
["] Enable Docker ®
(6]

["] Do not use top-level statements @

Back

_images/26.png
v = o X
@ Edit Permission | Platformus x +

<« C © localhost:1234/backend/permissions/edit/1 2 % R O M

_| Platformus Edit Permission

Content v Code required
DoAnything
Audience ~
Name required
92 Permissions Doanything
4b Roles
Position
A Users
- 100 +
Administration v
Development v
Administrator ~

@ Sign out

_images/24.png
@ Edit Configuration | Platformus X +

<& C @ localhost:1234/backend/configurations/edit/1
_| Platformus Edit Configuration
Content v Code required
Email
Audience v
Name required
Administration ~ Email

@ Configurations

Cultures
Development v
Administrator ~

@ Sign out

_images/25.png
@ Edit Culture | Platformus x +

<« C ® localhost:1234/backend/cultures/edit/en 2 % * O M

_| Platformus Edit Culture

content o Two-letter language code (ISO 639-1) required
en
Audience v
Name required
T a English
Administration ~ &
@ Configurations ~Is frontend default
Cultures
+ s backend default
Development v
Administrator ~

@ Sign out

_images/29.png
@ Data Sources | Platformus x +

& > C O localhost:1234/backend/datasources?endpoint.id=1

Endpoints / Default
_| Platformus Data Sources + Create datasource | | Back
Content v Code
Ecommerce e Code v Data provider C# class name
Auctionce L | =)
Page Platformus Website.Frontend.DataProviders.PageObjectDataProvider
Administration v
1—2flom2 By10 v
Development ~
% Classes
& Endpoints
Administrator ~

@ sign out

_images/3.png
@ Create Class | Platformus x +
< C @ localhost:1234/backend/classes/create
J Platformus Create Class
Content ~ Parent class (abstract only)
Parent class not specified v
& Objects
B Menus Code required
PostPage
B Forms
® File manager Name required
Post Page
Audience v
Pluralized name required
Administration ~ Post Pages
Development ~ Is abstract
R Classes
& Endpoints
Administrator ~

@ Sign out

_images/27.png
v = o X
@ Edit Role | Platformus. x +

<« C @ localhost:1234/backend/roles/edit/2 2 % * O M

_| Platformus Edit Role

Content ™ General Permissions
Audience ~ Code required
92 Permissions Administrator
45 Roles

Name required
Users Administrator
Administration v Position

= 200 +

Development v
Administrator ~

@ Sign out

_images/28.png
v = o X
@ Edit User | Platformus x +

<« C @ localhost:1234/backend/users/edit/1 2 % * O M

_| Platformus Edit User

Content ™ General Roles

Audience N Name required
9= Permissions Administrator

4b Roles

Users

Administration v

Development v

Administrator ~

@ Sign out

_images/311.png
@ Edit Field | Platformus x +

< C @ localhost:1234/backend/fields/edit/1?form.id=1 2 % * O M

_| Platformus Edit Field

Content ~ Type required
Text box v
& Objects
B Menus Code required
Name
E Forms
® File manager Name required
Your name =]
Audience v
Bawe ums =
Administration v Bawe iM'a =
Development o v Isrequired
Max length
- +
Position
= 10 +
Administrator ~

@ Sign out

_images/312.png
v = o X
@ Edit Member | Platformus x +

<« C @ localhost:1234/backend/members/edit/17classid=1 2 % * O M

_| Platformus Edit Member

Content ~ General Property Relation
i v
Rudience Property data type
Single line plain text v
Administration v
Is property localizable
Development ~
v Is property visible in list
2% Classes
& Endpoints v Isrequired
Max length
- 128 +
Administrator ~

@ Sign out

_images/31.png
0Q WebApplication - NuGet: WebApplication

NuGet: WebApplication # X

Browse Installed Updates

Platformus WebApplication

x +) [] include prerelease

NuGet Package Manager: WebApplication

Package source: nugetorg ~ &

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party

packages.

["] Do not show this again

N

. Platformus.WebApplicatiof) nugetorg

Version: Latest stable 4.0.0 - Install

(v) Options

T

Free, open source and cross-platform CMS based on ASP.NET
Core and ExtCore framework.

Version: 400
Author(s): Dmitry Sikorsky
License: Apache-20

Date published: Wednesday, November 30, 2022
(11/30/2022)

Project URL: httpsy//platformus.net/

Report Abuse: https;//www.nugetorg/packages/
Platformus WebApplication/4.0.0/
ReportAbuse

- Dependencies

“ net7.0
Platformus Core.Backend (:
Platformus Core Frontend (:
ExtCore Data (>= 8.0.0)
ExtCore Data EntityFramework (>= 80.0)
ExtCore WebApplication (>= 8.0.0)
Magicalizer Data Repositories EntityFramework (>= 3.0

_images/310.png
v = o X
@ Edit Endpoint | Platformus x +

<« C ® localhost:1234/backend/endpoints/edit/1 2 % R O M

_| Platformus Edit Endpoint

Content ~ General Access Request processing Response caching

Audience 4 .
Disallow anonymous

Administration v
Development ~
R Classes

& Endpoints

Administrator ~

@ Sign out

_images/313.png
Home
About me
Contacts

_images/314.png
Image Uploader

_images/112.png
@ Configurations | Platformus x +
< C O localhost:1234/backend/configurations
_| Platformus Configurations
Content v Email

SMTP server = test
Audience v

SMTP port =25
Administration A SMTP use SSL = no
@ Configurations SMTP login = test
Cultures SMTP password = test

o SMTP sender email = test

Development

Administrator

@ Sign out

SMTP sender name = test
Globalization
Specify culture in URL = yes

+ create variable

+ create configuration

_images/113.png
@ Cultures | Platformus x +
< C @ localhost:1234/backend/cultures
_| Platformus Cultures
Content 4
Audience e Two-letter language code (ISO 639-1)
Administration ~ en
© Configurations -
Cultures "‘
uk

Development

Administrator

@ Sign out

Name

English

Neutral

Pycckuit

YipaiHcbka

(m}]

2 % * O M

Create culture

1—4from4

By10 v

X

_images/110.png
Create a new project Search for templates (Alt+S) p-

Recent project templates All languages < Al platforms ~ Al project types -

Alist of your recently accessed templates will be

s
displayed here. = it

A project template for creating an ASPNET Core application with example ASP.NET
Core Razor Pages content

C# Linx macOS Windows Cloud Service Web

@ Blazor Server App

A project template for creating a Blazor server app that runs server-side inside an
ASPINET Core app and handles user interactions over a SignalR connection. This
template can be used for web apps with rich dynamic user interfaces (Uls).

C# Linx macOS Windows Blazor Cloud Web

Ei ASPINET Core Web APl
A project template for creating an ASPNET Core application with an example

Controller for a RESTful HTTP service. This template can also be used for ASPNET
Core MVC Views and Controllers.

C# Linx mac0S Windows Cloud Service Web WebAPI

ce

n&! Class Library
218 A projectfor creating a class library that targets NET or NET Standard

C# Android Linux macOS Windows Library

w=mCs ASP.NET Core Empty
An empty project template for creating an ASPNET Core application. This template

_images/111.png
v - (m}] X

@ Regular Pages | Platformus x +
< C @ localhost:1234/backend/objects?class.id=2 2 % R O M
| Platformus Objects Regular Pages
Content ~ Pages ~ URL
& Objects 3¢ Regular Pages /
0 Menus 38 Post Pages Jabout-me
B Forms ol

Others N ibles
® File manager Jeontacts
Audience v

1—4from4 By10 v

Administration v
Development v
Administrator ~

@ Sign out

_images/114.png
@ Permissions | Platformus x +
<« C @ localhost:1234/backend/permissions 2 % ® O A
J Platformus Permissions Create permi
Content @
Audience ~ Name Position v
= Do anything 100
& Rl Manage permissions 200
Fa
vsers Manage roles 300
Administration v Manage users Lo
Manage configurations 500
Development v
Manage cultures 600
Manage endpoints 700
Manage objects 800
Manage classes 900
Manage menus 1000
12 > » 1—10from12 Byl v
Administrator ~

@ Sign out

_images/35.png
v = o X
@ Edit Role | Platformus. x +

<& C O localhost:1234/backend/roles/edit/2

_| Platformus Edit Role

Content ™ General Permissions

Audience ~ .
v Doanything

9= Permissions
Manage permissions

45 Roles
Manage roles
#& Users 9
Manage users
Administration v
Manage configurations
Development v
Manage cultures
Manage endpoints
Manage objects
Manage classes
Manage menus
Manage forms
Manage file manager
Administrator ~

@ Sign out

_images/36.png
v = o X
@ Edit User | Platformus x +

<« C @ localhost:1234/backend/users/edit/1 2 % * O M

_| Platformus Edit User

Content ™ General Roles

Audience ~
' Developer

= Permissions
+~ Administrator

4b Roles

Content manager
Users 9
Administration v
Development v
Administrator ~

@ Sign out

_images/33.png
@ Edit Variable | Platformus x +

<« C @ localhost:1234/backend/variables/edit/1?configuration.id=1 2 % R O M

_| Platformus Edit Variable

Content v Code required
SmtpServer
Audience v
Name required
T a SMTP server
Administration ~
@ Configurations Value required
Cultures te=t
Position
Development v
_ 9 o
Administrator ~

@ Sign out

_images/34.png
Name required

Home =]

nasHas =

TonosHa =

_images/10.png
v
@ Create Endpoint | Platformus x +

« C @ localhost:1234/backend/endpoints/create e % ® O M :

_| Platformus Create Endpoint

Content ~ General Access Request processing Response caching
i v
Audience Name required
Post
Administration v

URL template

Development N blog/{postUrl}
R Classes
Position
& Endpoints _ D +
Administrator ~

@ Sign out

_images/39.png
3 localhost

é % O ﬁh localhost:5000/en/forms/send

<p>Your name: My name</p><p>Your email: My email</p><p>Your message: My message</p>

_images/11.png
@ Create Endpoint | Platformus x +

« C @ localhost:1234/backend/endpoints/create e % ® O M :

_| Platformus Create Endpoint

Content ~ General Access Request processing Response caching
i v

Audience Request processor C# class name required

Platformus Website.Frontend.RequestProcessors.DefaultReq... v

Administration v

Development N General

R Classes View name

& Endpoints PostPage

Administrator ~

@ Sign out

_images/4.png
v = a X
@ Create Member | Platformus. x +

< C @ localhost:1234/backend/members/create?class.id=3 2 N & O MA :

_| Platformus Create Member

Content ~ General Property Relation
9 v
Audience Tab
Tab not specified e
Administration h
Code required
Development ~ Preview
2% Classes
Name required
& Endpoints Preview
Position
_ 5 +
Administrator A

@ Sign out

_images/37.png
[y < [YourPersonal Website X +

< - O @

Home

About me

Contacts

English
Pycckuin
YKpaiHCcbka

© You, 2017

localhost:5000

Your Personal Website

Hello! This is your personal website, it is based on the Platformus content management
system. You can manage it (create pages, menu items, forms and so on) using the backend.
Please use the username and password specified during the installation to sign in (it is
“admin@platformus.net” and “admin” by default).

Please use the documentation to learn more about Platformus and how to use it. There are
several examples that could be useful for the beginners. Also, you can get help in our chat.

Have a nice work!

Some hardcoded value from our custom data source.

_images/1.png
v - [m] X
@ Classes | Platformus x +

< C @ localhost:1234/backend/classes
_| Platformus Classes
Content v All parent classes v
Audience 4 RS Name v Is abstract
Administration v - Page wes
Page Regular Page No
Development ~
% Classes 1—2from2 By10 v
& Endpoints
Administrator ~

@ Sign out

_images/38.png
@ Edit Endpoint | Platformus x +

<« C ® localhost:1234/backend/endpoints/edit/1 2 % R O M

_| Platformus Edit Endpoint

Content ~ General Access Request processing Response caching
v
Ecommerce Request processor C# class name required
WebApplication.MyRequestProcessor v
Audience v
Administration 4 Serialization
Format,
Development ~
® JsoN XML
R Classes
& Endpoints
Administrator ~

@ Sign out

_images/41.png
v = o X
@ Credentials | Platformus x +

<« C ® localhost:1234/backend/credentials?userid=1 2 % o O M

_| Platformus Credentials

Content @

Audience & Credential Type Identifier e
63 Pai==ns Email admin@platformus.net

4b Roles

Users 1—1from1 Byl0 v
Administration v

Development v

Administrator ~

@ Sign out

_images/32.png
@ Menus | Platformus x +
< C @ localhost:1234/backend/menus
_| Platformus Menus
Content ~ Main
@ Objects Home
© venus
B Forms About me
& Fie mansger
Audience v Blog)
Administration v
Contacts
v

Development

Administrator

@ Sign out

+ Create menuitem

+ Create menuitem

+ create menu

2 % * O M

_images/46.png
Creation date
2017-09-01T00:00:00 October 2017

Tu We Th Fr

04 .06

11 12 13
18 19 20
25 26 27

_images/5.png
Relation

@ Create Member | Platformus. x +
<& C @ localhost:1234/backend/members/create?class.id=3
J Platformus Create Member
Content e General Property
Rudience e Property data type

Html
Administration v

Development
2% Classes

& Endpoints

Administrator

@ Sign out

v Is property localizable

Is property visible in list

_images/44.png
Feedback from

Your name

Your email

‘Your message

_images/45.png
v = o X
@ Edit Member | Platformus x +

<« C @ localhost:1234/backend/members/edit/17classid=1 2 % * O M

_| Platformus Edit Member

Content ~ General Property Relation
Audience e Relation class
Relation class not specified v
Administration v
Development ~
2% Classes
& Endpoints
Administrator ~

@ Sign out

_images/6.png
@ Members | Platformus x +
< C @ localhost:1234/backend/members?class.id=3
_| Platformus Members
Content @
Audience v Name
Administration v Preview

Image

Development
2% Classes

& Endpoints

Administrator

@ Sign out

Creation date

[m]

B % o O M

Ip—

Property Data Type Relation Class

Html — 5
Image — 20
DateTime — 30

1—3from3

By10 v

X

_images/7.png
@ Blog Posts | Platformus

& > C O localhost:1234/backend/objects?class.id=3

_| Platformus

Content
& Objects
0 Menus
B Forms

® File manager
Audience
Administration

Development

Administrator

@ Sign out

x

B

Objects

Pages
3¢ Regular Pages

3 Post Pages

Post Pages

URL

Creation date

v - [m] X

B % % O M

Create post page

_images/51.png
v = o X
@ Edit Credential | Platformus x +

<« C @ localhost:1234/backend/credentials/edit/17userid=1 -2 % R OM

_| Platformus Edit Credential

content o Credential type required
Email v
Audience ~
Identifier required
69 (FEiEElns admin@platformus.net
4b Roles
Secret
Users
Administration v Apply PBKDF2 hashing to secret
Development v
Administrator ~

@ Sign out

_images/52.png
v
@ Edit Endpoint | Platformus x +

<« C ® localhost:1234/backend/endpoints/edit/1 2 % R O M

_| Platformus Edit Endpoint

Content ~ General Access Request processing Response caching
i v
Audience Response cache C# class name
Response cache C# class name not specified v
Administration v
Development ~
R Classes
& Endpoints
Administrator ~

@ Sign out

_images/42.png
@ localhost:1234/en/about-us X o+

<& C @ localhost:1234/en/about-us

This XML file does not appear to have any style information associated with it. The document tree is shown below.

2 % * O M

<someKey>Some value</someKey>

_images/43.png
v = o X
@ Edit Endpoint | Platformus x +
<& C O localhost:1234/backend/endpoints/edit/1
_| Platformus Edit Endpoint
Content @ General Access Request processing Response caching
Rudience e Request processor C# class name required
Platformus Website.Frontend.RequestProcessors.DefaultReq... v
Administration v
Development ~ General
B @ View name
& Endpoints RegularPage
Administrator ~

@ Sign out

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_images/9.png
@ Blog Posts | Platformus

& 2> C O localhost:1234/backend/objects?class.id=3

_| Platformus

Content
& Objects
0 Menus
B Forms

® File manager
Audience
Administration

Development

Administrator

@ sign out

x4

Objects

o Pages

28 Regular Pages

32 Post Pages

[m]

X

CER- N 3 N

URL Creation date

1—1from1

By10 v

_images/platformus.png

_images/8.png
@ Create Blog Post | Platformus x +

<& C @ localhost:1234/backend/objects/create?class.id=3
J Platformus Create Post Page
Content) General SEO
& Objects
URL
O Menus

/blog/my-first-blog-post
B Forms

Preview
® File manager

Edit Insert - View ~ Format~ Table ~ Tools

P |

Audience v « Formats B 7

Administration o Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum

dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Development v

